Development of Sialic Acid-coated Nanoparticles for Targeting Cancer and Efficient Evasion of the Immune System
نویسندگان
چکیده
Evading the reticuloendothelial system (RES) remains a critical challenge in the development of efficient delivery and diagnostic systems for cancer. Sialic acid (N-acetylneuraminic acid, Neu5Ac) is recognized as a "self" marker by major serum protein complement factor H and shows reduced interaction with the innate immune system via sialic acid-binding immunoglobulin-like lectin (Siglec), which is known as one of the significant regulators of phagocytic evasion. Accordingly, we prepared different surface-modified gold nanoparticles (AuNPs) and investigated the effects of sialic acid on cellular and immune responses of nanoparticles in vitro and in vivo. Sialic acid modification not only facilitates evasion of the RES by suppressing the immune response, but also enhances tumor accumulation via its active targeting ability. Therefore, sialic acid modification presents a promising strategy to advance nanotechnology towards the prospect of clinical translation.
منابع مشابه
SRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملFeMn2O4 nanoparticles coated dual responsive temperature and pH-responsive polymer as a magnetic nano-carrier for controlled delivery of letrozole anti-cancer
Objective(s): For cancer cells, an efficient and selective drug delivery vehicle can remarkably improve therapeutic approaches. This paper focuses on the synthesis and characterization of magnetic MnFe2O4 NPs and their incorporation in a dual temperature and pH-responsive polymer, which can serve as an efficient drug carrier. Materials and Methods: MnFe2O4 NPs were synthesized by chemical co-pr...
متن کاملCitric Acid Coated Magnetite Nanoparticles: An Efficient and Reusable Green Catalyst for Rapid Acetylation of Alcohols and Phenols
The acetylation of various alcohols and phenols was performed successfully using acetic anhydride in the presence of Citric acid coated magnetite nanoparticles as catalyst under solvent-free condition and at 45 °C. The catalyst showed high thermal stability and was recovered and reused at least 5 times without any considerable loss of activity. The present process is environmentally benign and ...
متن کاملAlkanedisulfamic acid functionalized silica-coated magnetic nanoparticles as a reusable efficient nanocatalyst for synthesis of gem-dihydroperoxides and 1,2,4,5-tetraoxanes
Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles (ADSA-MNPs) were used as effective, low-cost and reusable solid heterogeneous nanomagnetic catalysts for conversion of aldehydes and ketones to corresponding gem-dihydroperoxides and 1,2,4,5-tetraoxanes using aqueous hydrogen peroxide (30% w/w in H2O) at room temperature. These compounds are important ...
متن کامل